Involutions on surfaces of general type with $p_{g}=0$

YongJoo Shin
Sogang University
Dec. 20, 2012

Purposes

Purposes

Let S be a minimal surface of general type with $p_{g}=0$.

Purposes

Let S be a minimal surface of general type with $p_{g}=0$. Assume an involution σ on S.

Purposes

Let S be a minimal surface of general type with $p_{g}=0$. Assume an involution σ on S.
I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma=\varphi$).

Purposes

Let S be a minimal surface of general type with $p_{g}=0$. Assume an involution σ on S.
I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma=\varphi$).

- Classification of birational models of the quotients S / σ

Purposes

Let S be a minimal surface of general type with $p_{g}=0$. Assume an involution σ on S.
I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma=\varphi$).

- Classification of birational models of the quotients S / σ
- The examples available in the literature

Purposes

Let S be a minimal surface of general type with $p_{g}=0$. Assume an involution σ on S.
I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma=\varphi$).

- Classification of birational models of the quotients S / σ
- The examples available in the literature
II. The bicanonical map φ of S is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).

Purposes

Let S be a minimal surface of general type with $p_{g}=0$.
Assume an involution σ on S.
I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma=\varphi$).

- Classification of birational models of the quotients S / σ
- The examples available in the literature
II. The bicanonical map φ of S is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).
- Classification of branch divisors and birational models of the quotients S / σ

Purposes

Let S be a minimal surface of general type with $p_{g}=0$. Assume an involution σ on S.
I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma=\varphi$).

- Classification of birational models of the quotients S / σ
- The examples available in the literature
II. The bicanonical map φ of S is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).
- Classification of branch divisors and birational models of the quotients S / σ
- The examples available in the literature

Motivation

Motivation

The double cover is one of methods to construct a surface.

Motivation

The double cover is one of methods to construct a surface.
Examples: Campedelli surface, Keum-Naie surface.

Motivation

The double cover is one of methods to construct a surface.
Examples: Campedelli surface, Keum-Naie surface.
(1) Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)]

Motivation

The double cover is one of methods to construct a surface.
Examples: Campedelli surface, Keum-Naie surface.
(1) Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)]
They give a classification of all possible fixed loci and corresponding examples.

Motivation

The double cover is one of methods to construct a surface.
Examples: Campedelli surface, Keum-Naie surface.
(1) Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)]
They give a classification of all possible fixed loci and corresponding examples.
(2) Involutions on Godeaux surfaces without the assumption [Calabri, Ciliberto, Mendes Lopes (2007)]

Motivation

The double cover is one of methods to construct a surface.
Examples: Campedelli surface, Keum-Naie surface.
(1) Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)]
They give a classification of all possible fixed loci and corresponding examples.
(2) Involutions on Godeaux surfaces without the assumption [Calabri, Ciliberto, Mendes Lopes (2007)]

- Involutions on Campedelli surfaces
[Calabri, Mendes Lopes, Pardini (2008)]

Motivation

The double cover is one of methods to construct a surface.
Examples: Campedelli surface, Keum-Naie surface.
(1) Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)]
They give a classification of all possible fixed loci and corresponding examples.
(2) Involutions on Godeaux surfaces without the assumption [Calabri, Ciliberto, Mendes Lopes (2007)]
(0) Involutions on Campedelli surfaces
[Calabri, Mendes Lopes, Pardini (2008)]
They consider birational types and branch divisors of quotients by involutions.

Notations

Notations

S: a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

- π : the quotient map induced by the involution σ

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the k ordinary double points made by π

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the k ordinary double points made by π
- R: a fixed divisor of σ on S which is union of a smooth curve

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the k ordinary double points made by π
- R: a fixed divisor of σ on S which is union of a smooth curve
- $B_{0}:=\tilde{\pi}\left(\epsilon^{*}(R)\right)$

Notations

S : a minimal surface of general type with $p_{g}(S)=0$ having an involution σ.

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the k ordinary double points made by π
- R: a fixed divisor of σ on S which is union of a smooth curve
- $B_{0}:=\tilde{\pi}\left(\epsilon^{*}(R)\right)$
- \sim : the birationality between surfaces
I. The composed case

I. The composed case

Assume the bicanonical map φ is composed with an involution σ (i.e. $\varphi \circ \sigma=\varphi$).

I. The composed case

Assume the bicanonical map φ is composed with an involution σ (i.e. $\varphi \circ \sigma=\varphi$).

- $d:=$ the degree of φ

I. The composed case

Assume the bicanonical map φ is composed with an involution σ (i.e. $\varphi \circ \sigma=\varphi$).

- $d:=$ the degree of φ
- $\Sigma:=S / \sigma$

I. The composed case

Assume the bicanonical map φ is composed with an involution σ (i.e. $\varphi \circ \sigma=\varphi$).

- $d:=$ the degree of φ
- $\Sigma:=S / \sigma$
- $Z:=$ the image of S by φ

I. The composed case

Assume the bicanonical map φ is composed with an involution σ (i.e. $\varphi \circ \sigma=\varphi$).

- $d:=$ the degree of φ
- $\Sigma:=S / \sigma$
- $Z:=$ the image of S by φ

$$
\begin{aligned}
& V \xrightarrow{\epsilon} S
\end{aligned}
$$

Birational types of quotients and images of bicanonical maps

Birational types of quotients and images of bicanonical maps

1. $2 \leq K_{S}^{2} \leq 8$

Birational types of quotients and images of bicanonical maps

1. $2 \leq K_{S}^{2} \leq 8$

Since S is a minimal surface of general type with $p_{g}(S)=0$

$$
1 \leq K_{S}^{2} \leq 9
$$

by Bogomolov-Miyaoka-Yau inequality.

Birational types of quotients and images of bicanonical maps

1. $2 \leq K_{S}^{2} \leq 8$

Since S is a minimal surface of general type with $p_{g}(S)=0$

$$
1 \leq K_{S}^{2} \leq 9
$$

by Bogomolov-Miyaoka-Yau inequality.

- For $K_{S}^{2}=1$ the dimension of Z is 1 by Riemann-Roch formula.
[Calabri, Ciliberto, Mendes Lopes (2007)]

Birational types of quotients and images of bicanonical maps

1. $2 \leq K_{S}^{2} \leq 8$

Since S is a minimal surface of general type with $p_{g}(S)=0$

$$
1 \leq K_{S}^{2} \leq 9
$$

by Bogomolov-Miyaoka-Yau inequality.

- For $K_{S}^{2}=1$ the dimension of Z is 1 by Riemann-Roch formula.
[Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_{S}^{2}=9 S$ cannot have an involution.
[Dolgachev, Mendes Lopes, Pardini (2002)], [Keum (2008)]

Birational types of quotients and images of bicanonical maps

1. $2 \leq K_{S}^{2} \leq 8$

Since S is a minimal surface of general type with $p_{g}(S)=0$

$$
1 \leq K_{S}^{2} \leq 9
$$

by Bogomolov-Miyaoka-Yau inequality.

- For $K_{S}^{2}=1$ the dimension of Z is 1 by Riemann-Roch formula. [Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_{S}^{2}=9 S$ cannot have an involution.
[Dolgachev, Mendes Lopes, Pardini (2002)], [Keum (2008)]

So we exclude these two cases.
2. The range of degree d of φ
2. The range of degree d of φ

Assume the bicanonical map φ of S is a morphism.
2. The range of degree d of φ

Assume the bicanonical map φ of S is a morphism.
Remark: the bicanonical map φ of S is a morphism for $K_{S}^{2}=5,6,7,8$. [Bombieri (1973), Reider (1988)]
2. The range of degree d of φ

Assume the bicanonical map φ of S is a morphism.
Remark: the bicanonical map φ of S is a morphism for $K_{S}^{2}=5,6,7,8$. [Bombieri (1973), Reider (1988)]

Known results:
2. The range of degree d of φ

Assume the bicanonical map φ of S is a morphism.
Remark: the bicanonical map φ of S is a morphism for $K_{S}^{2}=5,6,7,8$. [Bombieri (1973), Reider (1988)]

Known results:

- φ is composed with $\sigma \Longrightarrow d$ is even.

2. The range of degree d of φ

Assume the bicanonical map φ of S is a morphism.
Remark: the bicanonical map φ of S is a morphism for $K_{S}^{2}=5,6,7,8$. [Bombieri (1973), Reider (1988)]

Known results:

- φ is composed with $\sigma \Longrightarrow d$ is even.
- $d=8$ if $K_{S}^{2}=2$ because the degree of Z is 1 .

2. The range of degree d of φ

Assume the bicanonical map φ of S is a morphism.
Remark: the bicanonical map φ of S is a morphism for $K_{S}^{2}=5,6,7,8$. [Bombieri (1973), Reider (1988)]

Known results:

- φ is composed with $\sigma \Longrightarrow d$ is even.
- $d=8$ if $K_{S}^{2}=2$ because the degree of Z is 1 .
- $d=2,4$ if $K_{S}^{2}=3,4,5,6$
- $d=2$ if $K_{S}^{2}=7,8$
[Mendes Lopes, Pardini (2007)]

3. Birational type of the quotient W

3. Birational type of the quotient W

Known results:
3. Birational type of the quotient W

Known results:

- W should be rational or ~ Enriques surface.
[Calabri, Ciliberto, Mendes Lopes (2007)]

3. Birational type of the quotient W

Known results:

- W should be rational or ~ Enriques surface.
[Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_{S}^{2}=3 W$ is rational or \sim Enriques surface.
- For $K_{S}^{2}=4$ and $d=2 W$ is rational.
[Mendes Lopes, Pardini (2002)]

3. Birational type of the quotient W

Known results:

- W should be rational or ~ Enriques surface.
[Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_{S}^{2}=3 W$ is rational or \sim Enriques surface.
- For $K_{S}^{2}=4$ and $d=2 W$ is rational.
[Mendes Lopes, Pardini (2002)]
- For $K_{S}^{2}=4$ and $d=4 W$ is rational or \sim Enriques surface.

3. Birational type of the quotient W

Known results:

- W should be rational or \sim Enriques surface.
[Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_{S}^{2}=3 W$ is rational or \sim Enriques surface.
- For $K_{S}^{2}=4$ and $d=2 W$ is rational.
[Mendes Lopes, Pardini (2002)]
- For $K_{S}^{2}=4$ and $d=4 W$ is rational or \sim Enriques surface.

Theorem (Shin)

Let S be a minimal surface of general type with $p_{g}=0$ having an involution σ. Assume that the bicanonical map φ is composed with σ. Then the quotient S / σ is rational for $K_{S}^{2}=5,6,7,8$.
4. Birational type of the image Z
4. Birational type of the image Z

- Z is rational for $K_{S}^{2}=2$ because Z is a surface containing in \mathbb{P}^{2} [Xiao (1985)] and Riemann-Roch Theorem

4. Birational type of the image Z

- Z is rational for $K_{S}^{2}=2$ because Z is a surface containing in \mathbb{P}^{2} [Xiao (1985)] and Riemann-Roch Theorem
- For $K_{S}^{2}=3$ and $d=2 Z$ is rational or \sim Enriques surface.
- For $K_{S}^{2}=3$ and $d=4 Z$ is rational.
- For $K_{S}^{2}=4,5,6,7,8 Z$ is rational.
[Mendes Lopes, Pardini (2002)]

Examples for each K_{S}^{2} and d

Examples for each K_{S}^{2} and d

K_{S}^{2}	d	W	Z	Examples
2	8	rational	rational	[Campedelli (1932)],
				[Burniat (1966)],
				[Kulikov (2004)]
	8	\sim Enriques surface	rational	[Kulikov (2004)]
3	2	rational	rational	[Rito (2010)]
	2	\sim Enriques surface	\sim Enriques surface	[Mendes Lopes, Pardini (2004)]
	4	rational	rational	[Burniat (1966)]
	4	\sim Enriques surface	rational	$[$ Keum (1988)],
				$[$ Naie (1994)]

K_{S}^{2}	d	W	Z	Examples
4	2	rational	rational	$[$ Rito (2011)]
	4	rational	rational	[Burniat (1966)]
	4	\sim Enriques surface	rational	$[$ Keum (1988)]
				$[$ Naie (1994)]

K_{S}^{2}	d	W	Z	Examples
5	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	rational rational	rational rational	[Rito (2011)] [Burniat (1966)]
6	2	rational rational	rational rational	[Inoue (1994)], [Mendes Lopes, Pardini (2004)], [Rito (2011)] [Burniat (1966)]
7	2	rational	rational	[Inoue (1994)], [Mendes Lopes, Pardini (2001)], [Rito (2011)]
8	2	rational	rational	[Mendes Lopes, Pardini (2001)], [Pardini (2003)]

\begin{tabular}{|c|c|c|c|c|}
\hline \(K_{S}^{2}\) \& \(d\) \& W \& Z \& Examples \\
\hline 5 \& \[
\begin{aligned}
\& 2 \\
\& 4
\end{aligned}
\] \& \begin{tabular}{l}
rational \\
rational
\end{tabular} \& \begin{tabular}{l}
rational \\
rational
\end{tabular} \& \begin{tabular}{l}
[Rito (2011)] \\
[Burniat (1966)]
\end{tabular} \\
\hline 6 \& 2

4 \& \begin{tabular}{l}
rational

rational

 \&

rational

rational

 \&

[Inoue (1994)],

[Mendes Lopes, Pardini (2004)],

[Rito (2011)]

[Burniat (1966)]
\end{tabular}

\hline 7 \& 2 \& rational \& rational \& | [Inoue (1994)], |
| :--- |
| [Mendes Lopes, Pardini (2001)], |
| [Rito (2011)] |

\hline 8 \& 2 \& rational \& rational \& | [Mendes Lopes, Pardini (2001)], |
| :--- |
| [Pardini (2003)] |

\hline
\end{tabular}

II. The noncomposed case

II. The noncomposed case

Assume the bicanonical map φ is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).

II. The noncomposed case

Assume the bicanonical map φ is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).

- $k:=$ the number of isolated fixed points by σ on S

II. The noncomposed case

Assume the bicanonical map φ is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).

- $k:=$ the number of isolated fixed points by σ on S
- $B_{0}:=\tilde{\pi}\left(\epsilon^{*}(R)\right)$, where R is a fixed divisor of σ on S

II. The noncomposed case

Assume the bicanonical map φ is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).

- $k:=$ the number of isolated fixed points by σ on S
- $B_{0}:=\tilde{\pi}\left(\epsilon^{*}(R)\right)$, where R is a fixed divisor of σ on S
${ }^{-}{ }_{(m, n)}^{\Gamma}:=m$ is $p_{a}(\Gamma)$ and n is the self intersection number of Γ

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+(1,-2) \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\underset{(3,0)}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\stackrel{\Gamma_{0}}{(3,-2)}$.

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+(1,-2) \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\underset{(3,0)}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\underset{(3,-2)}{\Gamma_{0}}$.

Theorem (Lee, Shin)

Let S be a minimal surface of general type with $p_{g}(S)=0$ and $K_{S}^{2}=7$ having an involution σ. If W is birational to an Enriques surface then $k=9, K_{W}^{2}=-2$, and the branch divisor $B_{0}=\underset{(3,0)}{\Gamma_{0}}+{ }_{(1,-2)}^{\Gamma_{1}}$ or ${ }_{(3,-2)}^{\Gamma_{0}}$.

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+(1,-2) \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\stackrel{{ }_{(3,0)}}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\underset{(3,-2)}{\Gamma_{0}}$.

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+(1,-2) \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\stackrel{{ }_{(3,0)}}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\underset{(3,-2)}{\Gamma_{0}}$.

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+(1,-2) \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\stackrel{{ }_{(3,0)}}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\underset{(3,-2)}{\Gamma_{0}}$.

$\downarrow \rho_{2}$

$$
\begin{aligned}
\boldsymbol{\Sigma}^{\prime} & =\left(\mathbf{D}_{1} \times \mathbf{D}_{2}\right) / \mathbf{G} \\
\ldots \ldots \mathbf{E}^{\prime \mathbf{G}} & =\mathbb{Z}_{2}^{2} \text { or } \mathbb{Z}_{2}^{3}
\end{aligned}
$$

$\tilde{N}_{2} \quad \tilde{N}_{9}$

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+(1,-2) \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\underset{(3,0)}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\underset{(3,-2)}{\Gamma_{0}}$.

Examples for W birational to an Enriques surface

Examples for W birational to an Enriques surface

1. Example 4.1 in The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geq 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

Examples for W birational to an Enriques surface

1. Example 4.1 in The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geq 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

Examples for W birational to an Enriques surface

1. Example 4.1 in The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geq 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

$D_{1}:=\Delta_{1}+f_{2}+S_{1}+S_{2}, D_{2}:=\Delta_{2}+f_{3}$,
$D_{3}:=\Delta_{3}+f_{1}+f_{1}^{\prime}+S_{3}+S_{4}$,

Examples for W birational to an Enriques surface

1. Example 4.1 in The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geq 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

$$
\begin{aligned}
& D_{1}:=\Delta_{1}+f_{2}+S_{1}+S_{2}, D_{2}:=\Delta_{2}+f_{3}, \\
& D_{3}:=\Delta_{3}+f_{1}+f_{1}^{\prime}+S_{3}+S_{4}, \\
& L_{1}:=5 I-e_{1}-2 e_{2}-e_{3}-3 e_{4}-2 e_{5}-2 e_{6}, \\
& L_{2}:=6 I-2 e_{1}-2 e_{2}-2 e_{3}-2 e_{4}-3 e_{5}-3 e_{6}, \\
& L_{3}:=4 I-2 e_{1}-2 e_{2}-2 e_{3}-e_{4}-e_{5}-e_{6}
\end{aligned}
$$

Examples for W birational to an Enriques surface

1. Example 4.1 in The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geq 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

$$
\begin{aligned}
& D_{1}:=\Delta_{1}+f_{2}+S_{1}+S_{2}, D_{2}:=\Delta_{2}+f_{3}, \\
& D_{3}:=\Delta_{3}+f_{1}+f_{1}^{\prime}+S_{3}+S_{4}, \\
& L_{1}:=5 /-e_{1}-2 e_{2}-e_{3}-3 e_{4}-2 e_{5}-2 e_{6}, \\
& L_{2}:=6 I-2 e_{1}-2 e_{2}-2 e_{3}-2 e_{4}-3 e_{5}-3 e_{6}, \\
& L_{3}:=4 I-2 e_{1}-2 e_{2}-2 e_{3}-e_{4}-e_{5}-e_{6} \\
& \Rightarrow 2 L_{1} \equiv D_{2}+D_{3},
\end{aligned}
$$

Examples for W birational to an Enriques surface

1. Example 4.1 in The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geq 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

$$
\begin{aligned}
& D_{1}:=\Delta_{1}+f_{2}+S_{1}+S_{2}, D_{2}:=\Delta_{2}+f_{3}, \\
& D_{3}:=\Delta_{3}+f_{1}+f_{1}^{\prime}+S_{3}+S_{4}, \\
& L_{1}:=5 /-e_{1}-2 e_{2}-e_{3}-3 e_{4}-2 e_{5}-2 e_{6}, \\
& L_{2}:=6 I-2 e_{1}-2 e_{2}-2 e_{3}-2 e_{4}-3 e_{5}-3 e_{6}, \\
& L_{3}:=4 I-2 e_{1}-2 e_{2}-2 e_{3}-e_{4}-e_{5}-e_{6} \\
& \Rightarrow 2 L_{1} \equiv D_{2}+D_{3}, 2 L_{2} \equiv D_{1}+D_{3}, 2 L_{3} \equiv D_{1}+D_{2} .
\end{aligned}
$$

We get \mathbb{Z}_{2}^{2}-cover $X \rightarrow P$.

We get \mathbb{Z}_{2}^{2}-cover $X \rightarrow P$.
Then X has eight (-1)-curves, and P has four (-2)-curves S_{i}, $i=1, \ldots, 4$.

We get \mathbb{Z}_{2}^{2}-cover $X \rightarrow P$.
Then X has eight (-1)-curves, and P has four (-2)-curves S_{i}, $i=1, \ldots, 4$.
After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D:=D_{1}+D_{2}+D_{3}$.

We get \mathbb{Z}_{2}^{2}-cover $X \rightarrow P$.
Then X has eight (-1)-curves, and P has four (-2)-curves S_{i}, $i=1, \ldots, 4$.
After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D:=D_{1}+D_{2}+D_{3}$.
\Rightarrow A minimal surface S of general type with $p_{g}(S)=0$ and $K_{S}^{2}=7$ having involutions γ_{1}, γ_{2} and γ_{3} induced by a bidouble cover. (i.e. \mathbb{Z}_{2}^{2}-cover)

We get \mathbb{Z}_{2}^{2}-cover $X \rightarrow P$.
Then X has eight (-1)-curves, and P has four (-2)-curves S_{i}, $i=1, \ldots, 4$.
After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D:=D_{1}+D_{2}+D_{3}$.
\Rightarrow A minimal surface S of general type with $p_{g}(S)=0$ and $K_{S}^{2}=7$ having involutions γ_{1}, γ_{2} and γ_{3} induced by a bidouble cover. (i.e. \mathbb{Z}_{2}^{2}-cover)
\Rightarrow We obtain the following table:

	k	$K_{W_{i}}^{2}$	B_{0}	W_{i}
$\left(S, \gamma_{1}\right)$	11	-4	Γ_{0} $(3,0)+{ }_{(2,-2)} \Gamma_{1}$ Γ_{0} Γ_{1}	rational
$\left(S, \gamma_{2}\right)$	9	-2	$(3,0)+{ }_{(1,-2)}$	birational to an Enriques surface
$\left(S, \gamma_{3}\right)$	9	-2	$\Gamma_{0}, 0$ $(2,0)+{ }_{(2,0)}^{\Gamma_{1}}+{ }_{(1,-2)}$	rational

We get \mathbb{Z}_{2}^{2}-cover $X \rightarrow P$.
Then X has eight (-1)-curves, and P has four (-2)-curves S_{i}, $i=1, \ldots, 4$.
After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D:=D_{1}+D_{2}+D_{3}$.
\Rightarrow A minimal surface S of general type with $p_{g}(S)=0$ and $K_{S}^{2}=7$ having involutions γ_{1}, γ_{2} and γ_{3} induced by a bidouble cover. (i.e. \mathbb{Z}_{2}^{2}-cover)
\Rightarrow We obtain the following table:

	k	$K_{W_{i}}^{2}$	B_{0}	W_{i}
$\left(S, \gamma_{1}\right)$	11	-4	Γ_{0} $(3,0)+{ }_{(2,-2)}$	rational
$\left(S, \gamma_{2}\right)$	9	-2	$\Gamma_{0}{ }_{(3,0)}^{\Gamma_{1} \Gamma_{1}}{ }_{(1,-2)}$	birational to an Enriques surface
$\left(S, \gamma_{3}\right)$	9	-2	$\left.\Gamma_{0}, 0\right)+{ }_{(2,0)}^{\Gamma_{1}}+{ }_{(1,-2)}^{\Gamma_{2}}$	rational

Examples for W birational to an Enriques surface

2. In A new family of surfaces of general type with $K^{2}=7$ and $p_{g}=0$ [Y . Chen (2012)],

Examples for W birational to an Enriques surface

2. In A new family of surfaces of general type with $K^{2}=7$ and $p_{g}=0$ [Y. Chen (2012)],

	k	$K_{W_{i}}^{2}$	B_{0}	W_{i}
$\left(S, \gamma_{1}\right)$	9	-2	Γ_{0} $(3,0)+{ }_{(1,-2)}^{\Gamma_{1}}$	rational
$\left(S, \gamma_{2}\right)$	9	-2	Γ_{0} $(3,-2)$	birational to an Enriques surface
$\left(S, \gamma_{3}\right)$	7	0	Γ_{0} $(2,-2)$	minimal properly elliptic

Examples for W birational to an Enriques surface

2. In A new family of surfaces of general type with $K^{2}=7$ and $p_{g}=0$ [Y. Chen (2012)],

	k	$K_{W_{i}}^{2}$	B_{0}	W_{i}
$\left(S, \gamma_{1}\right)$	9	-2	Γ_{0} $(3,0)+{ }_{(1,-2)}^{\Gamma_{1}}$	rational
$\left(S, \gamma_{2}\right)$	9	-2	Γ_{0} $(3,-2)$	birational to an Enriques surface
$\left(S, \gamma_{3}\right)$	7	0	Γ_{0} $(2,-2)$	minimal properly elliptic

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [Lee, Shin (2010)])

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+(1,-2) \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\underset{(3,0)}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\underset{(3,-2)}{\Gamma_{0}}$.

$$
K^{2}=2[\text { Calabri, Mendes Lopes, Pardini(2008)] }
$$

k	K_{W}^{2}	B_{0}	W
4	1	\emptyset	minimal of general type
4	0	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}$	minimal properly elliptic
4	-1	$\underset{(0,-4)}{\Gamma_{0}}+\underset{(0,-4)}{\Gamma_{1}}$	$\kappa(W) \leq 1$
4	-2	$\underset{(0,-4)}{\Gamma_{0}}+\underset{(0,-4)}{\Gamma_{1}}+\begin{gathered} \left.\Gamma_{2},-4\right) \end{gathered}$	$\kappa(W) \leq 1$

$$
K^{2}=2[\text { Calabri, Mendes Lopes, Pardini(2008)] }
$$

k	K_{W}^{2}	B_{0}	W
4	1	\emptyset	minimal of general type [Balow (1984), (1985)], [Calabri, Mendes Lopes, Pardini(2008)], [Park, Shin, Urzua (2011)]
4	0	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}$	minimal properly elliptic [Calabri, Mendes Lopes, Pardini(2008)]
4	-1	$\underset{(0,-4)}{\Gamma_{0}}+\begin{gathered} \Gamma_{1} \\ (0,-4) \end{gathered}$	$\kappa(W) \leq 1$ W ~Enriques surface [Calabri, Mendes Lopes, Pardini(2008)]
4	-2	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}+\begin{gathered} \Gamma_{1} \\ \left.\Gamma_{1},-4\right) \end{gathered}+\begin{gathered} \Gamma_{(0,-4)}^{\Gamma_{2}} \end{gathered}$	$\kappa(W) \leq 1$

$$
K^{2}=3
$$

k	K_{W}^{2}	B_{0}	W
5	0	$\begin{gathered} \Gamma_{0} \\ (1,-2) \end{gathered}$	minimal properly elliptic
5	-1	$\begin{aligned} & \Gamma_{(1,-2)}^{\Gamma_{0}}+\begin{array}{c} \Gamma_{1} \\ (0,-4) \\ (0,-6) \end{array} \\ & \Gamma_{0} \end{aligned}$	$\kappa(W) \leq 1$
5	-2	$\begin{aligned} & \Gamma_{0} \Gamma_{0}+\begin{array}{c} \Gamma_{1} \\ (0,-6) \\ \left.\Gamma_{0},-4\right) \\ (1,-2) \end{array}{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \end{aligned}$	$\kappa(W) \leq 1$

$$
K^{2}=3
$$

k	K_{W}^{2}	B_{0}	W
5	0	$\begin{gathered} \Gamma_{0} \\ (1,-2) \end{gathered}$	minimal properly elliptic [Rito (2012)]
5	-1	$\begin{aligned} & \Gamma_{(1,-2)}^{\Gamma_{0}}+\begin{array}{c} \Gamma_{1} \\ \left.\Gamma_{1},-4\right) \end{array} \\ & (0,-6) \end{aligned}$	$\kappa(W) \leq 1$ W ~ Enriques surface [Rito (2012)]
5	-2	$\begin{aligned} & \Gamma_{0}^{\Gamma_{0}}+\begin{array}{c} \Gamma_{1} \\ (0,-6) \\ \Gamma_{0} \\ (1,-2) \end{array}+{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \end{aligned}$	$\kappa(W) \leq 1$

$$
K^{2}=4
$$

k	K_{W}^{2}	B_{0}	W
4	2	\emptyset	minimal of general type
4	1	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}$	minimal of general type or of general type with $K_{W^{\prime}}^{2}=2$
4	0	$\underset{(0,-4)}{\Gamma_{0}}+\underset{(0,-4)}{\Gamma_{1}}$	minimal properly elliptic or of general type with $K_{W^{\prime}}^{2}=1$ or 2
6	0	$\begin{gathered} \Gamma_{0} \\ (2,0) \\ \hline \end{gathered}$	minimal properly elliptic
6	-1	$\begin{aligned} & \Gamma_{(2,0)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & (1,-4) \\ & \Gamma_{0} \\ & \Gamma_{0} \\ & (1,-2)+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \hline \end{aligned}$	$\kappa(W) \leq 1$
6	-2	$\begin{aligned} & \Gamma_{(2,0)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \\ & { }_{(1,-4)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & (0,-8) \\ & \Gamma_{0} \\ & { }_{(0,-6)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & { }_{(1,-2)}+{ }_{(1,-2)} \Gamma_{1}+{ }_{(0,-4)}^{\Gamma_{2}} \end{aligned}$	$\kappa(W) \leq 1$

$$
K^{2}=4
$$

k	K_{W}^{2}	B_{0}	W
4	2	\emptyset	minimal of general type
4	1	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}$	minimal of general type or of general type with $K_{W^{\prime}}^{2}=2$
4	0	$\underset{(0,-4)}{\Gamma_{0}}+\underset{(0,-4)}{\Gamma_{1}}$	minimal properly elliptic or of general type with $K_{W^{\prime}}^{2}=1$ or 2
6	0	$\begin{gathered} \Gamma_{0} \\ (2,0) \\ \hline \end{gathered}$	minimal properly elliptic
6	-1	$\begin{aligned} & \hline \Gamma_{0}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & (1,-4) \\ & \Gamma_{0} \\ & \Gamma_{0} \\ & (1,-2)+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \hline \end{aligned}$	$\kappa(W) \leq 1$ W ~ Enriques surface [Rito (2011)] $\kappa(W)=1[\text { Rito (2011)] }$
6	-2	$\begin{aligned} & \Gamma_{(2,0)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \\ & { }_{(1,-4)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & (0,-8) \\ & \Gamma_{0} \\ & { }_{(0,-6)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & { }_{(1,-2)}+{ }_{(1,-2)} \Gamma_{1}+{ }_{(0,-4)}^{\Gamma_{2}} \end{aligned}$	$\kappa(W) \leq 1$

$$
K^{2}=5
$$

k	K_{W}^{2}	B_{0}	W
5	1	$\begin{gathered} \Gamma_{0} \\ (1,-2) \\ \hline \end{gathered}$	minimal of general type
5	0	$\begin{aligned} & { }_{(1,-2)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & (0,-6) \end{aligned}$	minimal properly elliptic or of general type with $K_{W^{\prime}}^{2}=1$
7	0	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal properly elliptic
7	-1	$\begin{aligned} & \Gamma_{(3,2)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & { }_{(2,-2)}^{\Gamma_{0}} \\ & \\ & \Gamma_{(2,0)}^{\Gamma_{0}}+{ }_{(1,-2}^{\Gamma_{1}} \\ & \hline \end{aligned}$	$\kappa(W) \leq 1$
7	-2		$\kappa(W) \leq 1$

$$
K^{2}=5
$$

k	K_{W}^{2}	B_{0}	W
5	1	$\begin{gathered} \Gamma_{0} \\ (1,-2) \end{gathered}$	minimal of general type
5	0	$\begin{aligned} & { }_{(1,-2)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & { }_{(0,-6)} \\ & \hline 0,-6) \end{aligned}$	minimal properly elliptic or of general type with $K_{W^{\prime}}^{2}=1$
7	0	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal properly elliptic
7	-1	$\begin{aligned} & \Gamma_{(3,2)}^{\Gamma_{0}}+\begin{array}{c} \Gamma_{1} \\ (0,-4) \end{array} \\ & (2,-2) \\ & \Gamma_{0} \\ & \stackrel{\Gamma_{0}}{(2,0)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \hline \end{aligned}$	$\begin{aligned} & \kappa(W) \leq 1 \\ & W \sim \mathbb{P}^{2}[\text { Mendes Lopes, Pardini (2004) }], \\ & W \sim \text { Enriques surface [Rito (2011)] } \\ & \kappa(W)=1[\text { Rito }(2011)] \end{aligned}$
7	-2	$\begin{aligned} & \hline \Gamma_{0}{ }_{(3,2)}+{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \\ & { }_{(2,-2)}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & \Gamma_{0} \\ & (1,-6) \\ & \Gamma_{0} \\ & (2,0)+{ }_{(1,-2)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \\ & \Gamma_{0} \\ & (2,0)+{ }_{(0,-6)}^{\Gamma_{1}} \\ & \Gamma_{0} \Gamma_{1} \Gamma_{1} \\ & (1,-4)+{ }_{(1,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}{ }^{(1,-2)}+{ }_{(1,-2)}^{\Gamma_{2}}+{ }_{(1,-2)} \\ & \hline \end{aligned}$	$\kappa(W) \leq 1$ $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)] W ~ Enriques surface [Rito (2011)]

$$
K^{2}=6
$$

k	K_{W}^{2}	B_{0}	W		
4	3	\emptyset	minimal of general type		
4	2	$(0,-4)$ Γ_{0} 6	1		minimal of general type
:---					
or of general type with $K_{W^{\prime}}^{2}=3$					

8	0	$\begin{gathered} \Gamma_{0} \\ (4,4) \end{gathered}$	minimal properly elliptic
8	-1	$\begin{aligned} & \underset{\left(\Gamma_{0}\right.}{\Gamma_{4}}+\underset{(0,-4)}{\Gamma_{1}} \\ & \Gamma_{0} \\ & (3,0) \end{aligned}$	$\kappa(W) \leq 1$
		$\begin{aligned} & \stackrel{\Gamma_{0}}{(3,2)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \Gamma_{0}+{ }_{(2,0)}^{\Gamma_{1}} \\ & \stackrel{\Gamma}{2,0}) \end{aligned}$	
8	-2	$\begin{aligned} & \Gamma_{0}+{ }_{(2,0)}^{\Gamma_{1}}+\begin{array}{c} \Gamma_{2} \\ \Gamma_{0} \\ (2,0) \end{array}{ }_{(1,-4)}^{\Gamma_{1}} \\ & \Gamma_{0}+{ }_{(1,-2)}^{\Gamma_{1}}+{ }_{(1,-2)}^{\Gamma_{2}} \\ & (2,0)+{ }_{(1,-2} \end{aligned}$	$\kappa(W) \leq 1$

8	0	$\begin{gathered} \Gamma_{0} \\ (4,4) \end{gathered}$	minimal properly elliptic
8	-1	$\begin{aligned} & \begin{array}{l} \Gamma_{0} \\ (4,4) \\ \Gamma_{0} \\ (3,0) \end{array} \Gamma_{(0,-4)}^{\Gamma_{1}} \\ & \\ & \Gamma_{0}+{ }_{\left(1,{ }_{1}\right.}^{\Gamma_{1}} \\ & (3,2) \\ & \Gamma_{0}+\Gamma_{1} \Gamma_{1} \\ & (2,0)+{ }_{(2,0)} \\ & \hline \end{aligned}$	$\begin{aligned} & \kappa(W) \leq 1 \\ & W \sim \mathbb{P}^{2}[\text { Mendes Lopes, Pardini (2004) }], \\ & W \sim \text { Enriques surface }[\text { Rito }(2011)] \\ & \kappa(W)=1[\text { Rito }(2011)] \end{aligned}$
8	-2		$\kappa(W) \leq 1$ $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)], W ~ Enriques surface [Rito (2011)] $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)] $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)]

$$
K^{2}=7 \text { (cf. [Lee, Shin (2010)]) }
$$

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ (1,-2) \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}+{ }_{(1,-2)} \\ & (2,0)+{ }_{(1,-2)} \end{aligned}$	minimal properly elliptic, or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\underset{(3,0)}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ or $\underset{(3,-2)}{\Gamma_{0}}$.

$$
K^{2}=7(\text { cf. [Lee, Shin (2010)] })
$$

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ 1,-2) \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0} \\ & (2,0)+{ }_{(1,-2)} \Gamma_{1} \end{aligned}$	minimal properly elliptic [Chen (2012)], or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\underset{(3,0)}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ [Inoue (1994)], [Mendes Lopes, Pardini (2001)], [Rito (2011)] or $\underset{(3,-2)}{\Gamma_{0}}$ [Chen (2012)]. $W \sim \mathbb{P}^{2}$ [Rito (2009)], [Chen (2012)] $W \sim \mathbb{P}^{2}$ [Inoue (1994)],[Mendes Lopes,Pardini (2001)], [Rito (2011)]

$$
K^{2}=8
$$

k	K_{W}^{2}	B_{0}	W
4	4	\emptyset	minimal of general type
6	2	$\begin{gathered} \Gamma_{0} \\ (2,0) \end{gathered}$	minimal of general type
8	0	$\begin{aligned} & \stackrel{\Gamma}{\Gamma_{0}} \\ & \Gamma_{0} \\ & \Gamma_{0} \\ & (3,2) \end{aligned}+{ }_{(1,-2)}^{\Gamma_{1}} .$	minimal properly elliptic
10	-2	$\begin{aligned} & \hline \begin{array}{l} \Gamma_{0} \\ (4,0) \\ \Gamma_{0} \\ (3,0) \end{array}+\Gamma_{(2,0)} \\ & \Gamma_{0}+\Gamma_{1}+\Gamma_{2} \\ & (2,0)+(2,0)+(2,0) \\ & \hline \end{aligned}$	rational

$$
K^{2}=8
$$

k	K_{W}^{2}	B_{0}	W
4	4	\emptyset	minimal of general type [Inoue (1994)], [Mendes Lopes, Pardini (2001)]
6	2	$\begin{gathered} \hline \Gamma_{0} \\ (2,0) \\ \hline \end{gathered}$	minimal of general type
8	0	$\begin{aligned} & \stackrel{\Gamma_{0}}{(3,0)} \\ & \Gamma_{(3,2)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+{ }_{(2,0)} \\ & \hline \end{aligned}$	minimal properly elliptic [Mendes Lopes, Pardini (2001)] [Mendes Lopes, Pardini (2001)]
10	-2	$\begin{aligned} & \begin{array}{l} \Gamma_{0} \\ (4,0) \\ \Gamma_{0} \\ (3,0) \end{array}+{ }_{(2,0)}^{\Gamma_{1}} \\ & \Gamma_{0}+\Gamma_{1}+{ }_{(2,0)} \Gamma_{2} \\ & (2,0) \end{aligned}$	rational

$$
K^{2}=2[\text { Calabri, Mendes Lopes, Pardini(2008)] }
$$

k	K_{W}^{2}	B_{0}	W
4	1	\emptyset	minimal of general type [Balow (1984), (1985)], [Calabri, Mendes Lopes, Pardini(2008)], [Park, Shin, Urzua (2011)]
4	0	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}$	minimal properly elliptic [Calabri, Mendes Lopes, Pardini(2008)]
4	-1	$\underset{(0,-4)}{\Gamma_{0}}+\begin{gathered} \Gamma_{1} \\ (0,-4) \end{gathered}$	$\kappa(W) \leq 1$ W ~Enriques surface [Calabri, Mendes Lopes, Pardini(2008)]
4	-2	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}+\begin{gathered} \Gamma_{1} \\ \left.\Gamma_{1},-4\right) \end{gathered}+\begin{gathered} \Gamma_{(0,-4)}^{\Gamma_{2}} \end{gathered}$	$\kappa(W) \leq 1$

$$
K^{2}=3
$$

k	K_{W}^{2}	B_{0}	W
5	0	$\begin{gathered} \Gamma_{0} \\ (1,-2) \end{gathered}$	minimal properly elliptic [Rito (2012)]
5	-1	$\begin{aligned} & \Gamma_{(1,-2)}^{\Gamma_{0}}+\begin{array}{c} \Gamma_{1} \\ \left.\Gamma_{1},-4\right) \end{array} \\ & (0,-6) \end{aligned}$	$\kappa(W) \leq 1$ W ~ Enriques surface [Rito (2012)]
5	-2	$\begin{aligned} & \Gamma_{0}^{\Gamma_{0}}+\begin{array}{c} \Gamma_{1} \\ (0,-6) \\ \Gamma_{0} \\ (1,-2) \end{array}+{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \end{aligned}$	$\kappa(W) \leq 1$

$$
K^{2}=4
$$

k	K_{W}^{2}	B_{0}	W
4	2	\emptyset	minimal of general type
4	1	$\begin{gathered} \Gamma_{0} \\ (0,-4) \end{gathered}$	minimal of general type or of general type with $K_{W^{\prime}}^{2}=2$
4	0	$\underset{(0,-4)}{\Gamma_{0}}+\underset{(0,-4)}{\Gamma_{1}}$	minimal properly elliptic or of general type with $K_{W^{\prime}}^{2}=1$ or 2
6	0	$\begin{gathered} \Gamma_{0} \\ (2,0) \\ \hline \end{gathered}$	minimal properly elliptic
6	-1	$\begin{aligned} & \hline \Gamma_{0}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & (1,-4) \\ & \Gamma_{0} \\ & \Gamma_{0} \\ & (1,-2)+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \hline \end{aligned}$	$\kappa(W) \leq 1$ W ~ Enriques surface [Rito (2011)] $\kappa(W)=1[\text { Rito (2011)] }$
6	-2	$\begin{aligned} & \Gamma_{(2,0)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \\ & { }_{(1,-4)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & (0,-8) \\ & \Gamma_{0} \\ & { }_{(0,-6)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & { }_{(1,-2)}+{ }_{(1,-2)} \Gamma_{1}+{ }_{(0,-4)}^{\Gamma_{2}} \end{aligned}$	$\kappa(W) \leq 1$

$$
K^{2}=5
$$

k	K_{W}^{2}	B_{0}	W
5	1	$\begin{gathered} \Gamma_{0} \\ (1,-2) \end{gathered}$	minimal of general type
5	0	$\begin{aligned} & { }_{(1,-2)}^{\Gamma_{0}}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & { }_{(0,-6)} \\ & \hline 0,-6) \end{aligned}$	minimal properly elliptic or of general type with $K_{W^{\prime}}^{2}=1$
7	0	$\begin{gathered} \Gamma_{0} \\ (3,2) \\ \hline \end{gathered}$	minimal properly elliptic
7	-1	$\begin{aligned} & \Gamma_{(3,2)}^{\Gamma_{0}}+\begin{array}{c} \Gamma_{1} \\ (0,-4) \end{array} \\ & (2,-2) \\ & \Gamma_{0} \\ & \stackrel{\Gamma_{0}}{(2,0)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \hline \end{aligned}$	$\begin{aligned} & \kappa(W) \leq 1 \\ & W \sim \mathbb{P}^{2}[\text { Mendes Lopes, Pardini (2004) }], \\ & W \sim \text { Enriques surface [Rito (2011)] } \\ & \kappa(W)=1[\text { Rito }(2011)] \end{aligned}$
7	-2	$\begin{aligned} & \hline \Gamma_{0}{ }_{(3,2)}+{ }_{(0,-4)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \\ & { }_{(2,-2)}+{ }_{(0,-4)}^{\Gamma_{1}} \\ & \Gamma_{0} \\ & (1,-6) \\ & \Gamma_{0} \\ & (2,0)+{ }_{(1,-2)}^{\Gamma_{1}}+{ }_{(0,-4)}^{\Gamma_{2}} \\ & \Gamma_{0} \\ & (2,0)+{ }_{(0,-6)}^{\Gamma_{1}} \\ & \Gamma_{0} \Gamma_{1} \Gamma_{1} \\ & (1,-4)+{ }_{(1,-2)}^{\Gamma_{0}} \\ & \Gamma_{0}{ }^{(1,-2)}+{ }_{(1,-2)}^{\Gamma_{2}}+{ }_{(1,-2)} \\ & \hline \end{aligned}$	$\kappa(W) \leq 1$ $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)] W ~ Enriques surface [Rito (2011)]

$$
K^{2}=6
$$

k	K_{W}^{2}	B_{0}	W		
4	3	\emptyset	minimal of general type		
4	2	$(0,-4)$ Γ_{0} 6	1		minimal of general type
:---					
or of general type with $K_{W^{\prime}}^{2}=3$					

8	0	$\begin{gathered} \Gamma_{0} \\ (4,4) \end{gathered}$	minimal properly elliptic
8	-1	$\begin{aligned} & \begin{array}{l} \Gamma_{0} \\ (4,4) \\ \Gamma_{0} \\ (3,0) \end{array} \Gamma_{(0,-4)}^{\Gamma_{1}} \\ & \\ & \Gamma_{0}+{ }_{\left(1,{ }_{1}\right.}^{\Gamma_{1}} \\ & (3,2) \\ & \Gamma_{0}+\Gamma_{1} \Gamma_{1} \\ & (2,0)+{ }_{(2,0)} \\ & \hline \end{aligned}$	$\begin{aligned} & \kappa(W) \leq 1 \\ & W \sim \mathbb{P}^{2}[\text { Mendes Lopes, Pardini (2004) }], \\ & W \sim \text { Enriques surface }[\text { Rito }(2011)] \\ & \kappa(W)=1[\text { Rito }(2011)] \end{aligned}$
8	-2		$\kappa(W) \leq 1$ $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)], W ~ Enriques surface [Rito (2011)] $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)] $W \sim \mathbb{P}^{2}$ [Mendes Lopes, Pardini (2004)]

$$
K^{2}=7(\text { cf. [Lee, Shin (2010)] })
$$

k	K_{W}^{2}	B_{0}	W
5	2	$\begin{gathered} \Gamma_{0} \\ 1,-2) \end{gathered}$	minimal of general type
7	1	$\begin{gathered} \Gamma_{0} \\ (3,2) \end{gathered}$	minimal of general type
7	0	$\begin{aligned} & \Gamma_{(2,-2)}^{\Gamma_{0}} \\ & \Gamma_{0} \\ & (2,0)+{ }_{(1,-2)} \Gamma_{1} \end{aligned}$	minimal properly elliptic [Chen (2012)], or of general type whose the minimal model has $K^{2}=1$
9	-2		$\kappa(W) \leq 1$, and if W is birational to an Enriques surface then $B_{0}=\underset{(3,0)}{\Gamma_{0}}+\underset{(1,-2)}{\Gamma_{1}}$ [Inoue (1994)], [Mendes Lopes, Pardini (2001)], [Rito (2011)] or $\underset{(3,-2)}{\Gamma_{0}}$ [Chen (2012)]. $W \sim \mathbb{P}^{2}$ [Rito (2009)], [Chen (2012)] $W \sim \mathbb{P}^{2}$ [Inoue (1994)],[Mendes Lopes,Pardini (2001)], [Rito (2011)]

$$
K^{2}=8
$$

k	K_{W}^{2}	B_{0}	W
4	4	\emptyset	minimal of general type [Inoue (1994)], [Mendes Lopes, Pardini (2001)]
6	2	$\begin{gathered} \hline \Gamma_{0} \\ (2,0) \\ \hline \end{gathered}$	minimal of general type
8	0	$\begin{aligned} & \stackrel{\Gamma_{0}}{(3,0)} \\ & \Gamma_{(3,2)}+{ }_{(1,-2)}^{\Gamma_{1}} \\ & \Gamma_{0}+\Gamma_{1} \\ & (2,0)+{ }_{(2,0)} \\ & \hline \end{aligned}$	minimal properly elliptic [Mendes Lopes, Pardini (2001)] [Mendes Lopes, Pardini (2001)]
10	-2	$\begin{aligned} & \begin{array}{l} \Gamma_{0} \\ (4,0) \\ \Gamma_{0} \\ (3,0) \end{array}+{ }_{(2,0)}^{\Gamma_{1}} \\ & \Gamma_{0}+\Gamma_{1}+{ }_{(2,0)} \Gamma_{2} \\ & (2,0) \end{aligned}$	rational

Thank you for your attention!

