Involutions on surfaces of general type with $p_g = 0$

YongJoo Shin

Sogang University

Dec. 20, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Purposes

(ロ)、(型)、(E)、(E)、 E) の(の)

Let S be a minimal surface of general type with $p_g = 0$.

(ロ)、(型)、(E)、(E)、 E) の(の)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma = \varphi$).

I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma = \varphi$).

- Classification of birational models of the quotients S/σ

I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma = \varphi$).

- Classification of birational models of the quotients S/σ
- The examples available in the literature

I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma = \varphi$).

- Classification of birational models of the quotients S/σ
- The examples available in the literature
- II. The bicanonical map φ of S is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).

- I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma = \varphi$).
 - Classification of birational models of the quotients S/σ
 - The examples available in the literature
- II. The bicanonical map φ of S is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).
 - Classification of branch divisors and birational models of the quotients ${\cal S}/\sigma$

- I. The bicanonical map φ of S is composed with σ (i.e. $\varphi \circ \sigma = \varphi$).
 - Classification of birational models of the quotients S/σ
 - The examples available in the literature
- II. The bicanonical map φ of S is not composed with σ (i.e. $\varphi \circ \sigma \neq \varphi$).
 - Classification of branch divisors and birational models of the quotients ${\cal S}/\sigma$
 - The examples available in the literature

Motivation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation

The double cover is one of methods to construct a surface.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples: Campedelli surface, Keum-Naie surface.

Examples: Campedelli surface, Keum-Naie surface.

 Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)]

Examples: Campedelli surface, Keum-Naie surface.

 Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)] They give a classification of all possible fixed loci and corresponding examples.

Examples: Campedelli surface, Keum-Naie surface.

 Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)] They give a classification of all possible fixed loci and corresponding examples.

 Involutions on Godeaux surfaces without the assumption [Calabri, Ciliberto, Mendes Lopes (2007)]

Examples: Campedelli surface, Keum-Naie surface.

 Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)] They give a classification of all possible fixed loci and corresponding examples.

- Involutions on Godeaux surfaces without the assumption [Calabri, Ciliberto, Mendes Lopes (2007)]
- Involutions on Campedelli surfaces
 [Calabri, Mendes Lopes, Pardini (2008)]

Examples: Campedelli surface, Keum-Naie surface.

- Involutions on Godeaux surfaces whose bicanonical system has no base components [Keum, Lee (2000)] They give a classification of all possible fixed loci and corresponding examples.
- Involutions on Godeaux surfaces without the assumption [Calabri, Ciliberto, Mendes Lopes (2007)]
- Involutions on Campedelli surfaces [Calabri, Mendes Lopes, Pardini (2008)] They consider birational types and branch divisors of quotients by involutions.

(ロ)、(型)、(E)、(E)、 E) の(の)

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• π : the quotient map induced by the involution σ

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ

• $\tilde{\pi}$: a map induced by π

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the *k* ordinary double points made by π

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the *k* ordinary double points made by π

• R: a fixed divisor of σ on S which is union of a smooth curve

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the k ordinary double points made by π
- R: a fixed divisor of σ on S which is union of a smooth curve
- $B_0 := \tilde{\pi}(\epsilon^*(R))$

S: a minimal surface of general type with $p_g(S) = 0$ having an involution σ .

- π : the quotient map induced by the involution σ
- ϵ : the blowing-up of S at k disjoint isolated fixed points arising from the involution σ
- $\tilde{\pi}$: a map induced by π
- η : the minimal resolution of the *k* ordinary double points made by π

- R: a fixed divisor of σ on S which is union of a smooth curve
- $B_0 := \tilde{\pi}(\epsilon^*(R))$
- \bullet $\sim:$ the birationality between surfaces

I. The composed case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• d := the degree of φ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- d := the degree of φ
- $\Sigma := S/\sigma$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\bullet \ d := {\rm the \ degree \ of} \ \varphi$
- $\Sigma := S/\sigma$
- Z := the image of S by φ

- d := the degree of φ
- $\Sigma := S/\sigma$
- Z := the image of S by φ

Birational types of quotients and images of bicanonical maps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Birational types of quotients and images of bicanonical maps

1. $2 \le K_S^2 \le 8$

Birational types of quotients and images of bicanonical maps 1. $2 \le K_S^2 \le 8$

Since S is a minimal surface of general type with $p_g(S) = 0$

$$1 \le K_S^2 \le 9$$

by Bogomolov-Miyaoka-Yau inequality.

Birational types of quotients and images of bicanonical maps 1. $2 \le K_S^2 \le 8$

Since S is a minimal surface of general type with $p_g(S) = 0$

$$1 \le K_S^2 \le 9$$

by Bogomolov-Miyaoka-Yau inequality.

 For K_S² = 1 the dimension of Z is 1 by Riemann-Roch formula. [Calabri, Ciliberto, Mendes Lopes (2007)]

Birational types of quotients and images of bicanonical maps 1. $2 \le K_S^2 \le 8$

Since S is a minimal surface of general type with $p_g(S) = 0$

$$1 \le K_S^2 \le 9$$

by Bogomolov-Miyaoka-Yau inequality.

 For K_S² = 1 the dimension of Z is 1 by Riemann-Roch formula. [Calabri, Ciliberto, Mendes Lopes (2007)]

For K_S² = 9 S cannot have an involution.
 [Dolgachev, Mendes Lopes, Pardini (2002)], [Keum (2008)]

Birational types of quotients and images of bicanonical maps 1. $2 \le K_S^2 \le 8$

Since S is a minimal surface of general type with $p_g(S) = 0$

$$1 \le K_S^2 \le 9$$

by Bogomolov-Miyaoka-Yau inequality.

 For K_S² = 1 the dimension of Z is 1 by Riemann-Roch formula. [Calabri, Ciliberto, Mendes Lopes (2007)]

 For K_S² = 9 S cannot have an involution. [Dolgachev, Mendes Lopes, Pardini (2002)], [Keum (2008)]

So we exclude these two cases.

Assume the bicanonical map φ of S is a morphism.

(ロ)、(型)、(E)、(E)、 E) の(の)

Assume the bicanonical map φ of S is a morphism.

Remark: the bicanonical map φ of *S* is a morphism for $K_S^2 = 5, 6, 7, 8$. [Bombieri (1973), Reider (1988)]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume the bicanonical map φ of S is a morphism.

Remark: the bicanonical map φ of *S* is a morphism for $K_S^2 = 5, 6, 7, 8$. [Bombieri (1973), Reider (1988)]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Known results:

Assume the bicanonical map φ of S is a morphism.

Remark: the bicanonical map φ of S is a morphism for $K_S^2 = 5, 6, 7, 8$. [Bombieri (1973), Reider (1988)]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Known results:

• φ is composed with $\sigma \Longrightarrow d$ is even.

Assume the bicanonical map φ of S is a morphism.

Remark: the bicanonical map φ of S is a morphism for $K_S^2 = 5, 6, 7, 8$. [Bombieri (1973), Reider (1988)]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Known results:

• φ is composed with $\sigma \Longrightarrow d$ is even.

•
$$d = 8$$
 if $K_S^2 = 2$ because the degree of Z is 1.

Assume the bicanonical map φ of S is a morphism.

Remark: the bicanonical map φ of S is a morphism for $K_S^2 = 5, 6, 7, 8$. [Bombieri (1973), Reider (1988)]

Known results:

- φ is composed with $\sigma \Longrightarrow d$ is even.
- d = 8 if $K_S^2 = 2$ because the degree of Z is 1.
- d = 2,4 if $K_S^2 = 3,4,5,6$
- d = 2 if $K_S^2 = 7, 8$

[Mendes Lopes, Pardini (2007)]

Known results:

Known results:

• *W* should be rational or ~ Enriques surface. [Calabri, Ciliberto, Mendes Lopes (2007)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Known results:

- W should be rational or ~ Enriques surface.
 [Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_S^2 = 3 \ W$ is rational or \sim Enriques surface.

Known results:

- W should be rational or ~ Enriques surface.
 [Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_5^2 = 3 W$ is rational or ~ Enriques surface.

• For
$$K_S^2 = 4$$
 and $d = 4$ W is rational or \sim Enriques surface.

Known results:

- W should be rational or ~ Enriques surface.
 [Calabri, Ciliberto, Mendes Lopes (2007)]
- For $K_5^2 = 3 W$ is rational or ~ Enriques surface.

• For $K_S^2 = 4$ and d = 4 W is rational or \sim Enriques surface.

Theorem (Shin)

Let S be a minimal surface of general type with $p_g = 0$ having an involution σ . Assume that the bicanonical map φ is composed with σ . Then the quotient S/σ is rational for $K_S^2 = 5, 6, 7, 8$.

4. Birational type of the image Z

- 4. Birational type of the image Z
 - Z is rational for $K_S^2 = 2$ because Z is a surface containing in \mathbb{P}^2 [Xiao (1985)] and Riemann-Roch Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 4. Birational type of the image Z
 - Z is rational for K²_S = 2 because Z is a surface containing in P² [Xiao (1985)] and Riemann-Roch Theorem

- For $K_S^2 = 3$ and d = 2 Z is rational or \sim Enriques surface.
- For $K_S^2 = 3$ and d = 4 Z is rational.
- For K_S² = 4, 5, 6, 7, 8 Z is rational. [Mendes Lopes, Pardini (2002)]

Examples for each K_{s}^{2} and *d*

Examples for each K_{S}^{2} and d

K_S^2	d	W	Z	Examples
2	8	rational	rational	[Campedelli (1932)],
				[Burniat (1966)],
				[Kulikov (2004)]
	8	$\sim {\sf Enriques} \; {\sf surface}$	rational	[Kulikov (2004)]
3	2	rational	rational	[Rito (2010)]
	2	\sim Enriques surface	\sim Enriques surface	[Mendes Lopes, Pardini (2004)]
	4	rational	rational	[Burniat (1966)]
	4	$\sim {\rm Enriques} \; {\rm surface}$	rational	[Keum (1988)],
				[Naie (1994)]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

K_S^2	d	W	Ζ	Examples
4	2	rational	rational	[Rito (2011)]
	4	rational	rational	[Burniat (1966)]
	4	\sim Enriques surface	rational	[Keum (1988)],
				[Naie (1994)]

K_S^2	d	W	Ζ	Examples
5	2	rational	rational	[Rito (2011)]
	4	rational	rational	[Burniat (1966)]
6	2	rational	rational	[Inoue (1994)],
				[Mendes Lopes, Pardini (2004)],
				[Rito (2011)]
	4	rational	rational	[Burniat (1966)]
7	2	rational	rational	[Inoue (1994)],
				[Mendes Lopes, Pardini (2001)],
				[Rito (2011)]
8	2	rational	rational	[Mendes Lopes, Pardini (2001)],
				[Pardini (2003)]

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

K_S^2	d	W	Ζ	Examples
5	2	rational	rational	[Rito (2011)]
	4	rational	rational	[Burniat (1966)]
6	2	rational	rational	[Inoue (1994)],
				[Mendes Lopes, Pardini (2004)],
				[Rito (2011)]
	4	rational	rational	[Burniat (1966)]
7	2	rational	rational	[Inoue (1994)],
				[Mendes Lopes, Pardini (2001)],
				[Rito (2011)]
8	2	rational	rational	[Mendes Lopes, Pardini (2001)],
				[Pardini (2003)]

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

II. The noncomposed case

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• k:= the number of isolated fixed points by σ on S

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- k:= the number of isolated fixed points by σ on S
- $B_0 := \tilde{\pi}(\epsilon^*(R))$, where R is a fixed divisor of σ on S

- k:= the number of isolated fixed points by σ on S
- $B_0 := \tilde{\pi}(\epsilon^*(R))$, where R is a fixed divisor of σ on S
- $\prod_{(m,n)}^{\Gamma} = m$ is $p_a(\Gamma)$ and n is the self intersection number of Γ

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	$\Gamma_{(4,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa({\mathcal W}) \leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (0,-6)}$	
		$\Gamma_{(3,0)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (1,-4)}$	
		$\Gamma_{0}^{\Gamma_{0}} + \Gamma_{1}^{\Gamma_{1}}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	$\Gamma_{(4,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa({\mathcal W}) \leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${}^{\Gamma_0}_{(4,4)} + {}^{\Gamma_1}_{(0,-6)}$	
		${\Gamma_0 \choose (3,0)} + {\Gamma_1 \choose (1,-2)}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-4)}$	
		$\Gamma_{0}^{\Gamma_{0}} + \Gamma_{1}^{\Gamma_{1}}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	

Theorem (Lee, Shin)

Let S be a minimal surface of general type with $p_g(S) = 0$ and $K_S^2 = 7$ having an involution σ . If W is birational to an Enriques surface then k = 9, $K_W^2 = -2$, and the branch divisor $B_0 = \frac{\Gamma_0}{(3,0)} + \frac{\Gamma_1}{(1,-2)}$ or $\frac{\Gamma_0}{(3,-2)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	$\Gamma_{(4,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa({\mathcal W}) \leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (0,-6)}$	
		${\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-4)}$	
		$\Gamma_{0}^{\Gamma_{0}} + \Gamma_{1}^{\Gamma_{1}}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	$\Gamma_{(4,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa({\mathcal W}) \leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${}^{\Gamma_0}_{(4,4)}+{}^{\Gamma_1}_{(1,-2)}+{}^{\Gamma_2}_{(0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (0,-6)}$	
		${\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$	
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (1,-4)}$	
		$\Gamma_{0} + \Gamma_{1} + \Gamma_{1} + \Gamma_{2,0}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	
Birational types and branch divisors of the quotient of a minimal surface of general type with $p_g = 0$ and $K^2 = 7$ (cf. [Lee, Shin (2010)])

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	$\Gamma_0^{\Gamma_0} + \Gamma_1^{\Gamma_1}_{(0,-4)}$	$\kappa({\it W})\leq$ 1, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${}^{\Gamma_0}_{(4,4)}+{}^{\Gamma_1}_{(1,-2)}+{}^{\Gamma_2}_{(0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (0,-6)}$	
		${\Gamma_0 \choose (3,0)} + {\Gamma_1 \choose (1,-2)}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-4)}$	
		$\Gamma_{0} + \Gamma_{1} + \Gamma_{1} + \Gamma_{2,0}$	
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

₹.

æ

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_g = 0$ and $K^2 = 7$ (cf. [Lee, Shin (2010)])

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	$\Gamma_{(4,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa({\mathcal W}) \leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (0,-6)}$	
		${\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-4)}$	
		$\Gamma_{0}^{\Gamma_{0}} + \Gamma_{1}^{\Gamma_{1}}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Example 4.1 in The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

1. Example 4.1 in The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

1. Example 4.1 in The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

 $\begin{aligned} D_1 &:= \Delta_1 + f_2 + S_1 + S_2, \ D_2 &:= \Delta_2 + f_3, \\ D_3 &:= \Delta_3 + f_1 + f_1' + S_3 + S_4, \end{aligned}$

1. Example 4.1 in The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

 $\begin{array}{l} D_1 := \Delta_1 + f_2 + S_1 + S_2, \ D_2 := \Delta_2 + f_3, \\ D_3 := \Delta_3 + f_1 + f_1' + S_3 + S_4, \\ L_1 := 5l - e_1 - 2e_2 - e_3 - 3e_4 - 2e_5 - 2e_6, \\ L_2 := 6l - 2e_1 - 2e_2 - 2e_3 - 2e_4 - 3e_5 - 3e_6, \\ L_3 := 4l - 2e_1 - 2e_2 - 2e_3 - e_4 - e_5 - e_6 \end{array}$

1. Example 4.1 in The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

$$\begin{split} D_1 &:= \Delta_1 + f_2 + S_1 + S_2, \ D_2 &:= \Delta_2 + f_3, \\ D_3 &:= \Delta_3 + f_1 + f_1' + S_3 + S_4, \\ L_1 &:= 5l - e_1 - 2e_2 - e_3 - 3e_4 - 2e_5 - 2e_6, \\ L_2 &:= 6l - 2e_1 - 2e_2 - 2e_3 - 2e_4 - 3e_5 - 3e_6, \\ L_3 &:= 4l - 2e_1 - 2e_2 - 2e_3 - e_4 - e_5 - e_6 \\ \Rightarrow 2L_1 &\equiv D_2 + D_3, \end{split}$$

1. Example 4.1 in The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$ [Mendes Lopes, Pardini (2001)] (cf. [Inoue (1994), Rito (2011)])

$$\begin{split} D_1 &:= \Delta_1 + f_2 + S_1 + S_2, \ D_2 &:= \Delta_2 + f_3, \\ D_3 &:= \Delta_3 + f_1 + f_1' + S_3 + S_4, \\ L_1 &:= 5l - e_1 - 2e_2 - e_3 - 3e_4 - 2e_5 - 2e_6, \\ L_2 &:= 6l - 2e_1 - 2e_2 - 2e_3 - 2e_4 - 3e_5 - 3e_6, \\ L_3 &:= 4l - 2e_1 - 2e_2 - 2e_3 - e_4 - e_5 - e_6 \\ \Rightarrow 2L_1 &\equiv D_2 + D_3, \ 2L_2 &\equiv D_1 + D_3, \ 2L_3 &\equiv D_1 + D_2. \end{split}$$

We get \mathbb{Z}_2^2 -cover $X \to P$.

We get \mathbb{Z}_2^2 -cover $X \to P$. Then X has eight (-1)-curves, and P has four (-2)-curves S_i , $i = 1, \dots, 4$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We get \mathbb{Z}_2^2 -cover $X \to P$. Then X has eight (-1)-curves, and P has four (-2)-curves S_i , $i = 1, \ldots, 4$.

After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D := D_1 + D_2 + D_3$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We get \mathbb{Z}_2^2 -cover $X \to P$. Then X has eight (-1)-curves, and P has four (-2)-curves S_i , i = 1, ..., 4.

After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D := D_1 + D_2 + D_3$.

⇒ A minimal surface S of general type with $p_g(S) = 0$ and $K_S^2 = 7$ having involutions γ_1, γ_2 and γ_3 induced by a bidouble cover. (i.e. \mathbb{Z}_2^2 -cover) We get \mathbb{Z}_2^2 -cover $X \to P$. Then X has eight (-1)-curves, and P has four (-2)-curves S_i , $i = 1, \ldots, 4$.

After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D := D_1 + D_2 + D_3$.

- ⇒ A minimal surface S of general type with p_g(S) = 0 and K²_S = 7 having involutions γ₁, γ₂ and γ₃ induced by a bidouble cover. (i.e. Z²₂-cover)
- \Rightarrow We obtain the following table:

	k	$K_{W_i}^2$	B ₀	Wi
(S, γ_1)	11	-4	$\Gamma_{(3,0)}^{\Gamma_0} + \Gamma_{(2,-2)}^{\Gamma_1}$	rational
(S, γ_2)	9	-2	$\Gamma_{(3,0)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	birational to an Enriques surface
(S, γ_3)	9	-2	$\Gamma_{0} + \Gamma_{1} + \Gamma_{2} + \Gamma_{2} + \Gamma_{1,-2}$	rational

We get \mathbb{Z}_2^2 -cover $X \to P$. Then X has eight (-1)-curves, and P has four (-2)-curves S_i , $i = 1, \ldots, 4$.

After contracting these curves, we get $S \rightarrow Q$ branched on the four singular points of Q and on the image of $D := D_1 + D_2 + D_3$.

- ⇒ A minimal surface S of general type with p_g(S) = 0 and K²_S = 7 having involutions γ₁, γ₂ and γ₃ induced by a bidouble cover. (i.e. Z²₂-cover)
- \Rightarrow We obtain the following table:

	k	$K_{W_i}^2$	B ₀	Wi
(S, γ_1)	11	-4	$\Gamma_{(3,0)}^{\Gamma_0} + \Gamma_{(2,-2)}^{\Gamma_1}$	rational
(S, γ_2)	9	-2	$^{\Gamma_0}_{(3,0)} + ^{\Gamma_1}_{(1,-2)}$	birational to an Enriques surface
(S, γ_3)	9	-2	$\Gamma_{0} + \Gamma_{1} + \Gamma_{2} + \Gamma_{2} + \Gamma_{1,-2}$	rational

2. In A new family of surfaces of general type with $K^2 = 7$ and $p_g = 0$ [Y. Chen (2012)],

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. In A new family of surfaces of general type with $K^2 = 7$ and $p_g = 0$ [Y. Chen (2012)],

	k	$K_{W_i}^2$	B_0	Wi
(S, γ_1)	9	-2	$\Gamma_{(3,0)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	rational
(S, γ_2)	9	-2	Γ ₀ (3,-2)	birational to an Enriques surface
(S, γ_3)	7	0	Γ ₀ (2,-2)	minimal properly elliptic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. In A new family of surfaces of general type with $K^2 = 7$ and $p_g = 0$ [Y. Chen (2012)],

	k	$K_{W_i}^2$	B_0	Wi
(S, γ_1)	9	-2	$\Gamma_{(3,0)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	rational
(S, γ_2)	9	-2	Γ ₀ (3,-2)	birational to an Enriques surface
(S, γ_3)	7	0	Γ ₀ (2,-2)	minimal properly elliptic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Birational types and branch divisors of the quotient of a minimal surface of general type with $p_g = 0$ and $K^2 = 7$ (cf. [Lee, Shin (2010)])

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	$\Gamma_{(4,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa({\mathcal W}) \leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${}^{\Gamma_0}_{(4,4)} + {}^{\Gamma_1}_{(0,-6)}$	
		${\Gamma_0 \choose (3,0)} + {\Gamma_1 \choose (1,-2)}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-4)}$	
		$\Gamma_{0}^{\Gamma_{0}} + \Gamma_{1}^{\Gamma_{1}}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	

$K^2 = 2$ [Calabri, Mendes Lopes, Pardini(2008)]

k	K_W^2	B ₀	W
4	1	Ø	minimal of general type
4	0	Γ_0 (0,-4)	minimal properly elliptic
4	-1	$\Gamma_0 + \Gamma_1 + \Gamma_1 = \Gamma_1 $	$\kappa(W) \leq 1$
4	-2	$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_2 + (0, -4) + (0, -4)$	$\kappa(W) \leq 1$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで
$K^2 = 2$ [Calabri, Mendes Lopes, Pardini(2008)]

k	K_W^2	B ₀	W
4	1	Ø	minimal of general type
			[Balow (1984), (1985)],
			[Calabri, Mendes Lopes, Pardini(2008)],
			[Park, Shin, Urzua (2011)]
4	0	Γ ₀ (0,-4)	minimal properly elliptic
			[Calabri, Mendes Lopes, Pardini(2008)]
4	-1	$\Gamma_0 + \Gamma_1 = (0, -4)$	$\kappa(\mathcal{W}) \leq 1$
			$W \sim Enriques$ surface
			[Calabri, Mendes Lopes, Pardini(2008)]
4	-2	$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_2 + (0, -4) + (0, -4)$	$\kappa(W) \leq 1$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$K^{2} = 3$$

k	K_W^2	B ₀	W
5	0	Г ₀ (1,-2)	minimal properly elliptic
5	-1	$ \begin{matrix} \Gamma_0 \\ (1,-2) + (0,-4) \\ \Gamma_0 \\ (0,-6) \end{matrix} $	$\kappa(W) \leq 1$
5	-2	$ \frac{ \Gamma_0}{ \begin{pmatrix} 0,-6 \end{pmatrix} + \begin{pmatrix} \Gamma_1 \\ 0,-4 \end{pmatrix} } \\ \frac{ \Gamma_0}{ \begin{pmatrix} 1,-2 \end{pmatrix} + \begin{pmatrix} \Gamma_1 \\ 0,-4 \end{pmatrix} + \begin{pmatrix} \Gamma_2 \\ 0,-4 \end{pmatrix} } $	$\kappa(W) \leq 1$

$$K^{2} = 3$$

k	K_W^2	B ₀	W
5	0	Γ ₀ (1,-2)	minimal properly elliptic
			[Rito (2012)]
5	-1	$\Gamma_{(1,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa(W) \leq 1$
		Γ ₀ (0,-6)	$W\sim { m Enriques}$ surface
			[Rito (2012)]
5	-2	$\Gamma_0 + \Gamma_1 \\ (0,-6) + (0,-4)$	$\kappa(W) \leq 1$
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + \Gamma_2 + \Gamma_1 + \Gamma_2 + (0, -4)$	

$$K^{2} = 4$$

k	K_W^2	B ₀	W
4	2	Ø	minimal of general type
4	1	Γ ₀ (0,-4)	minimal of general type
			or of general type with $K^2_{W'}=2$
4	0	$\Gamma_{0,-4)}^{\Gamma_{0}} + \Gamma_{1,-4}^{\Gamma_{1}}$	minimal properly elliptic
			or of general type with $K^2_{W'}=1$ or 2
6	0	Γ ₀ (2,0)	minimal properly elliptic
6	-1	$\Gamma_0 + \Gamma_1 \\ (2,0) + (0,-4)$	$\kappa(W) \leq 1$
		Γ ₀ (1,-4)	
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + (1,-2)$	
6	-2	${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (0,-4)} + {\Gamma_2 \choose (0,-4)}$	$\kappa(W) \leq 1$
		$\Gamma_{(1,-4)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	
		Γ ₀ (0,-8)	
		$\Gamma_0 + \Gamma_1 \\ (0,-6) + (1,-2)$	
		$\Gamma_{(1,-2)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1} + \Gamma_{(0,-4)}^{\Gamma_2}$	

$$K^{2} = 4$$

k	K_W^2	B ₀	W
4	2	Ø	minimal of general type
4	1	Γ ₀ (0,-4)	minimal of general type
			or of general type with $K^2_{W'}=2$
4	0	$\Gamma_{0,-4)}^{\Gamma_{0}} + \Gamma_{1,-4}^{\Gamma_{1}}$	minimal properly elliptic
			or of general type with $K^2_{W'}=1$ or 2
6	0	Γ ₀ (2,0)	minimal properly elliptic
6	-1	$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa(W) \leq 1$
		Γ ₀ (1,-4)	$W\sim$ Enriques surface [Rito (2011)]
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + (1, -2)$	$\kappa(W) = 1$ [Rito (2011)]
6	-2	${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (0,-4)} + {\Gamma_2 \choose (0,-4)}$	$\kappa(W) \leq 1$
		$\Gamma_0 + \Gamma_1 + \Gamma_1 = (0, -4)$	
		Γ ₀ (0,-8)	
		$\Gamma_{0,-6)}^{\Gamma_{0}} + \Gamma_{1,-2)}^{\Gamma_{1}}$	
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + \Gamma_2 + (0, -4)$	

 $K^{2} = 5$

k	K_W^2	B ₀	W
5	1	Γ ₀ (1,-2)	minimal of general type
5	0	$\Gamma_{(1,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	minimal properly elliptic
		Γ ₀ (0,-6)	or of general type with ${\cal K}^2_{W'}=1$
7	0	Γ ₀ (3,2)	minimal properly elliptic
7	-1	${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (0,-4)}$	$\kappa(W) \leq 1$
		Γ ₀ (2,-2)	
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	
7	-2	$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_2 + (0, -4)$	$\kappa(\mathcal{W}) \leq 1$
		$\Gamma_{(2,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	
		Γ ₀ (1,-6)	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (0,-4)}$	
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(0,-6)}^{\Gamma_1}$	
		$\Gamma_{(1,-4)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	
		$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_2 + \Gamma_1 + \Gamma_2 + \Gamma_2 + \Gamma_1 - 2$	

k	K_W^2	B ₀	W
5	1	Γ ₀ (1,-2)	minimal of general type
5	0	$\Gamma_{(1,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	minimal properly elliptic
		Γ ₀ (0,-6)	or of general type with ${\cal K}^2_{W'}=1$
7	0	Γ ₀ (3,2)	minimal properly elliptic
7	-1	${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (0,-4)}$	$\kappa(W) \leq 1$
		Γ ₀ (2,-2)	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)],
			$W\sim {\sf Enriques} \; {\sf surface} \; [{\sf Rito} \; (2011)]$
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	$\kappa(W) = 1$ [Rito (2011)]
7	-2	$\Gamma_{(3,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1} + \Gamma_{(0,-4)}^{\Gamma_2}$	$\kappa(W) \leq 1$
		$\Gamma_{(2,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	
		Γ ₀ (1,-6)	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (0,-4)}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)]
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(0,-6)}^{\Gamma_1}$	
		$\Gamma_{(1,-4)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	$W\sim {\sf Enriques} \ {\sf surface} \ [{\sf Rito} \ (2011)]$
		$\Gamma_0 + \Gamma_1 + \Gamma_2 $	

$$K^{2} = 6$$

k	K_W^2	B ₀	W
4	3	Ø	minimal of general type
4	2	Γ ₀ (0,-4)	minimal of general type
			or of general type with $K_{W'}^2 = 3$
6	1	Γ ₀ (2,0)	minimal of general type
6	0	$\Gamma_0 + \Gamma_1 \\ (2,0) + (0,-4)$	minimal properly elliptic
		Γ ₀ (1,-4)	or of general type with $K^2_{W'}=1$
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + (1,-2)$	

8	0	Γ ₀ (4,4)	minimal properly elliptic
8	-1	$\Gamma_0 + \Gamma_1 \\ (4,4) + (0,-4)$	$\kappa(W) \leq 1$
		Γ ₀ (3,0)	
		$\Gamma_{(3,2)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(2,0)}^{\Gamma_1}$	
8	-2	$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_2 + (0, -4) + (0, -4)$	$\kappa(W) \leq 1$
		$\Gamma_{(3,0)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	
		Γ_0 (2,-4)	
		$\Gamma_{(3,2)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1} + \Gamma_{(0,-4)}^{\Gamma_2}$	
		$\Gamma_{0}^{0} + \Gamma_{1}^{1}$ (3,2) + (0,-6)	
		$\Gamma_{0} + \Gamma_{1} - \Gamma_{1} + \Gamma_{1} - \Gamma_{1}$	
		$\begin{bmatrix} \Gamma_0 \\ (2,0) + (2,0) + (0,-4) \end{bmatrix}$	
		$\Gamma_{0}^{0} + \Gamma_{1}^{1}$	
		$\begin{bmatrix} \Gamma_0 \\ (2,0) + (1,-2) + (1,-2) \end{bmatrix}$	

8	0	Γ ₀ (4,4)	minimal properly elliptic
8	-1	$\Gamma_{(4,4)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa(W) \leq 1$
		Γ ₀ (3,0)	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)],
			$W\sim$ Enriques surface [Rito (2011)]
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)}$	$\kappa(W) = 1$ [Rito (2011)]
8	-2	$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_2 + (0, -4) + (0, -4)$	$\kappa(\mathcal{W}) \leq 1$
		${\Gamma_0 \choose (3,0)} + {\Gamma_1 \choose (0,-4)}$	
		Γ ₀ (2,-4)	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (0,-4)}$	
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (0,-6)}$	
		$_{(2,-2)}^{\Gamma_0} + _{(1,-2)}^{\Gamma_1}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)],
			$W\sim$ Enriques surface [Rito (2011)]
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (0,-4)}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)]
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(1,-4)}^{\Gamma_1}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)]

$K^2 = 7$ (cf. [Lee, Shin (2010)])

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic,
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has $\mathcal{K}^2=1$
9	-2	${\Gamma_0 \atop (4,2)} + {\Gamma_1 \atop (0,-4)}$	$\kappa({\sf W})\leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ or ${\Gamma_0 \atop (3,-2)}$.
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (0,-6)}$	
		${\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-4)}$	
		${}^{\Gamma_0}_{(2,-2)} + {}^{\Gamma_1}_{(2,0)}$	
		$\Gamma_{(3,2)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1} + \Gamma_{(1,-2)}^{\Gamma_2}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	

$K^2 = 7$ (cf. [Lee, Shin (2010)])

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic [Chen (2012)],
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	${\Gamma_0 \atop (4,2)} + {\Gamma_1 \atop (0,-4)}$	$\kappa({\sf W})\leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ [Inoue (1994)],
		$\Gamma_0 + \Gamma_1 + \Gamma_1 = (0, -6)$	[Mendes Lopes,Pardini (2001)], [Rito (2011)]
			or ${}^{\Gamma_0}_{(3,-2)}$ [Chen (2012)].
		$\Gamma_0 + \Gamma_1 \\ (3,0) + (1,-2)$	$W\sim \mathbb{P}^2$ [Rito (2009)], [Chen (2012)]
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (1,-4)}$	
		$\Gamma_{0} + \Gamma_{1} + \Gamma_{1} + \Gamma_{2,0}$	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	$W\sim \mathbb{P}^2$ [Inoue (1994)],[Mendes Lopes,Pardini (2001)],
			[Rito (2011)]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$K^{2} = 8$$

k	K_W^2	B ₀	W
4	4	Ø	minimal of general type
6	2	Γ ₀ (2,0)	minimal of general type
8	0		minimal properly elliptic
		Γ ₀ (3,0)	
		$\Gamma_{(3,2)}^{\Gamma_0} + \Gamma_{(1,-2)}^{\Gamma_1}$	
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(2,0)}^{\Gamma_1}$	
10	-2	Γ ₀ (4,0)	rational
		${\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (2,0)}$	
		$\Gamma_0 (2,0) + \Gamma_1 (2,0) + \Gamma_2 (2,0)$	

$$K^{2} = 8$$

k	K_W^2	B ₀	W
4	4	Ø	minimal of general type
			[Inoue (1994)],
			[Mendes Lopes, Pardini (2001)]
6	2	Γ ₀ (2,0)	minimal of general type
8	0		minimal properly elliptic
		Γ ₀ (3,0)	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)}$	[Mendes Lopes, Pardini (2001)]
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)}$	[Mendes Lopes, Pardini (2001)]
10	-2	Γ ₀ (4,0)	rational
		${\Gamma_0 \choose (3,0)} + {\Gamma_1 \choose (2,0)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (2,0)}$	

$K^2 = 2$ [Calabri, Mendes Lopes, Pardini(2008)]

k	K_W^2	B ₀	W
4	1	Ø	minimal of general type
			[Balow (1984), (1985)],
			[Calabri, Mendes Lopes, Pardini(2008)],
			[Park, Shin, Urzua (2011)]
4	0	Γ ₀ (0,-4)	minimal properly elliptic
			[Calabri, Mendes Lopes, Pardini(2008)]
4	-1	$\Gamma_0 + \Gamma_1 = (0, -4)$	$\kappa(\mathcal{W}) \leq 1$
			$W \sim Enriques$ surface
			[Calabri, Mendes Lopes, Pardini(2008)]
4	-2	$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_2 + (0, -4) + (0, -4)$	$\kappa(W) \leq 1$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$K^{2} = 3$$

k	K_W^2	B ₀	W
5	0	Γ ₀ (1,-2)	minimal properly elliptic
			[Rito (2012)]
5	-1	$\Gamma_{(1,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa(W) \leq 1$
		Γ ₀ (0,-6)	$W\sim { m Enriques}$ surface
			[Rito (2012)]
5	-2	$\Gamma_0 + \Gamma_1 \\ (0,-6) + (0,-4)$	$\kappa(W) \leq 1$
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + \Gamma_2 + \Gamma_1 + \Gamma_2 + (0, -4)$	

$$K^{2} = 4$$

k	K_W^2	B ₀	W
4	2	Ø	minimal of general type
4	1	Γ ₀ (0,-4)	minimal of general type
			or of general type with $K^2_{W'}=2$
4	0	$\Gamma_{0,-4)}^{\Gamma_{0}} + \Gamma_{1,-4}^{\Gamma_{1}}$	minimal properly elliptic
			or of general type with $K^2_{W'}=1$ or 2
6	0	Γ ₀ (2,0)	minimal properly elliptic
6	-1	$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa(W) \leq 1$
		Γ ₀ (1,-4)	$W\sim$ Enriques surface [Rito (2011)]
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + (1,-2)$	$\kappa(W) = 1$ [Rito (2011)]
6	-2	${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (0,-4)} + {\Gamma_2 \choose (0,-4)}$	$\kappa(W) \leq 1$
		$\Gamma_0 + \Gamma_1 + \Gamma_1 = (0, -4)$	
		Γ ₀ (0,-8)	
		$\Gamma_{0,-6)}^{\Gamma_{0}} + \Gamma_{1,-2)}^{\Gamma_{1}}$	
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + \Gamma_2 + (0, -4)$	

k	K_W^2	B ₀	W
5	1	Γ ₀ (1,-2)	minimal of general type
5	0	$\Gamma_{(1,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	minimal properly elliptic
		Γ ₀ (0,-6)	or of general type with ${\cal K}^2_{W'}=1$
7	0	Γ ₀ (3,2)	minimal properly elliptic
7	-1	${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (0,-4)}$	$\kappa(W) \leq 1$
		Γ ₀ (2,-2)	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)],
			$W\sim {\sf Enriques} \; {\sf surface} \; [{\sf Rito} \; (2011)]$
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	$\kappa(W) = 1$ [Rito (2011)]
7	-2	$\Gamma_{(3,2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1} + \Gamma_{(0,-4)}^{\Gamma_2}$	$\kappa(W) \leq 1$
		$\Gamma_{(2,-2)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	
		Γ ₀ (1,-6)	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (0,-4)}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)]
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(0,-6)}^{\Gamma_1}$	
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + (1, -2)$	$W\sim$ Enriques surface [Rito (2011)]
		$\Gamma_0 + \Gamma_1 + \Gamma_2 $	

$$K^{2} = 6$$

k	K_W^2	B ₀	W
4	3	Ø	minimal of general type
4	2	Γ ₀ (0,-4)	minimal of general type
			or of general type with $K_{W'}^2 = 3$
6	1	Γ ₀ (2,0)	minimal of general type
6	0	$\Gamma_0 + \Gamma_1 \\ (2,0) + (0,-4)$	minimal properly elliptic
		Γ ₀ (1,-4)	or of general type with $K^2_{W'}=1$
		$\Gamma_0 + \Gamma_1 + \Gamma_1 + (1,-2)$	

8	0	Γ ₀ (4,4)	minimal properly elliptic
8	-1	$\Gamma_{(4,4)}^{\Gamma_0} + \Gamma_{(0,-4)}^{\Gamma_1}$	$\kappa(W) \leq 1$
		Γ ₀ (3,0)	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)],
			$W\sim$ Enriques surface [Rito (2011)]
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)}$	$\kappa(W) = 1$ [Rito (2011)]
8	-2	$\Gamma_0 + \Gamma_1 + \Gamma_2 + \Gamma_2 + (0, -4) + (0, -4)$	$\kappa(\mathcal{W}) \leq 1$
		${\Gamma_0 \choose (3,0)} + {\Gamma_1 \choose (0,-4)}$	
		Γ ₀ (2,-4)	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (0,-4)}$	
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (0,-6)}$	
		$_{(2,-2)}^{\Gamma_0} + _{(1,-2)}^{\Gamma_1}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)],
			$W\sim$ Enriques surface [Rito (2011)]
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (0,-4)}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)]
		$\Gamma_{(2,0)}^{\Gamma_0} + \Gamma_{(1,-4)}^{\Gamma_1}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)} + {\Gamma_2 \choose (1,-2)}$	$W \sim \mathbb{P}^2$ [Mendes Lopes, Pardini (2004)]

$K^2 = 7$ (cf. [Lee, Shin (2010)])

k	K_W^2	B ₀	W
5	2	Γ ₀ (1,-2)	minimal of general type
7	1	Γ ₀ (3,2)	minimal of general type
7	0	Γ ₀ (2,-2)	minimal properly elliptic [Chen (2012)],
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (1,-2)}$	or of general type whose the minimal model has ${\cal K}^2=1$
9	-2	${\Gamma_0 \atop (4,2)} + {\Gamma_1 \atop (0,-4)}$	$\kappa({\sf W})\leq 1$, and
		Γ ₀ (3,-2)	if W is birational to an Enriques surface
		${}^{\Gamma_0}_{(4,4)}+{}^{\Gamma_1}_{(1,-2)}+{}^{\Gamma_2}_{(0,-4)}$	then $B_0 = {\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$ [Inoue (1994)],
		${\Gamma_0 \atop (4,4)} + {\Gamma_1 \atop (0,-6)}$	[Mendes Lopes,Pardini (2001)], [Rito (2011)]
			or ${}^{\Gamma_0}_{(3,-2)}$ [Chen (2012)].
		${\Gamma_0 \atop (3,0)} + {\Gamma_1 \atop (1,-2)}$	$W\sim \mathbb{P}^2$ [Rito (2009)], [Chen (2012)]
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (1,-4)}$	
		$\Gamma_{0}^{\Gamma_{0}} + \Gamma_{1}^{\Gamma_{1}}$	
		${\Gamma_0 \atop (3,2)} + {\Gamma_1 \atop (1,-2)} + {\Gamma_2 \atop (1,-2)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (1,-2)}$	$W\sim \mathbb{P}^2$ [Inoue (1994)],[Mendes Lopes,Pardini (2001)],
			[Rito (2011)]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$K^{2} = 8$$

k	K_W^2	B ₀	W
4	4	Ø	minimal of general type
			[Inoue (1994)],
			[Mendes Lopes, Pardini (2001)]
6	2	Γ ₀ (2,0)	minimal of general type
8	0		minimal properly elliptic
		Γ ₀ (3,0)	
		${\Gamma_0 \choose (3,2)} + {\Gamma_1 \choose (1,-2)}$	[Mendes Lopes, Pardini (2001)]
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)}$	[Mendes Lopes, Pardini (2001)]
10	-2	Γ ₀ (4,0)	rational
		${\Gamma_0 \choose (3,0)} + {\Gamma_1 \choose (2,0)}$	
		${\Gamma_0 \choose (2,0)} + {\Gamma_1 \choose (2,0)} + {\Gamma_2 \choose (2,0)}$	

Thank you for your attention!